0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

На каком принципе основывается воздействие препарата

2.5.3. Основные механизмы действия лекарств

Многие лекарства имеют одинаковый механизм действия и, следовательно, могут быть объединены в группы и подгруппы. Количество различных фармакологических групп (подгрупп) ограничивается десятками. Лекарственные препараты и фармгруппы изучаются будущим врачом в институте, но для глубокого понимания фармакологии требуется немало специальных знаний и опыт работы в клинике. Однако и неспециалисту полезно попытаться понять хотя бы общие принципы действия лекарств. Тогда пациент сможет вести более аргументированный диалог с врачом, что повысит эффективность их общения. Давайте попробуем разобраться, что же происходит внутри нас, когда мы принимаем лекарство?

Под действием лекарств в организме не происходит новых биохимических реакций или физиологических процессов. Большинство лекарств только стимулируют, имитируют, угнетают или полностью блокируют действие внутренних посредников, передающих сигналы между различными органами и системами через биологические субстраты.

Каждое звено механизма обратной связи участвует в регулировании функций клетки и целого организма, а, следовательно, может служить “мишенью” – биологическим субстратом – для лекарственных средств. Из двух участников реакции “лекарство + биологический субстрат” первый обычно хорошо известен, специалисты знают его структуру и свойства. О втором зачастую информация более скудная: хотя последние 10-20 лет интенсивно изучается структура и функции различных биологических субстратов, однако до полной ясности пока еще далеко.

Многие ферменты являются “мишенями” для лекарств. Лекарства могут угнетать или – реже – повышать активность этих ферментов, а также являться для них “ложными” субстратами. Например, угнетающими активность (ингибирующими) ферментов средствами являются ненаркотические анальгетики и нестероидные противовоспалительные средства (глава 3.9), некоторые противоопухолевые препараты (метотрексат), а ложным субстратом – метилдофа. Ингибиторы ангиотензинпревращающего фермента (АПФ) (каптоприл и эналаприл) широко применяются в качестве понижающих артериальное давление (гипотензивных) средств (глава 3.5). Изменяя активность ферментов, лекарства изменяют внутриклеточные процессы и тем самым обеспечивают лечебный эффект.

В основе фармакологического действия лекарств лежит их физико-химическое или химическое взаимодействие с такими “мишенями”. Возможность взаимодействия лекарства с биологическим субстратом зависит в первую очередь от химического строения каждого из них. Последовательность расположения атомов, пространственная конфигурация молекулы, величина и расположение зарядов, подвижность фрагментов молекулы относительно друг друга влияют на прочность связи и, тем самым, на силу и продолжительность фармакологического действия. Молекула лекарственного вещества в большинстве случаев имеет очень маленький размер по сравнению с биологическими субстратами, поэтому она может соединяться только с небольшим фрагментом макромолекулы рецептора. При любой реакции между лекарством и биологическим субстратом образуется химическая связь (смотри главу 1.4).

Из школьного курса химии известно, что связь между двумя различными веществами может быть обратимой или необратимой, временной или прочной. Она образуется благодаря электростатическим и ван-дер-ваальсовым силам, водородным и гидрофобным взаимодействиям. Прочные ковалентные связи между лекарством и биологическим субстратом встречаются редко. Например, некоторые противоопухолевые средства за счет ковалентного взаимодействия “сшивают” соседние спирали ДНК, являющейся в данном случае субстратом, и необратимо повреждают ее, вызывая гибель опухолевой клетки.

Итак, есть сигнальные молекулы (медиаторы, гормоны, эндогенные биологически активные вещества), и есть биологические субстраты, с которыми эти молекулы взаимодействуют. Лекарства, введенные в организм, могут воспроизводить или блокировать эффекты естественных сигнальных молекул, изменяя тем самым функции клеток, тканей, органов и систем органов. Этим определяется фармакологическое действие лекарств (таблица 2.5.1).

Таблица 2.5.1. Основные принципы действия лекарственных средств (ЛС)
Вид взаимодействияМеханизм взаимодействия ЛС и рецептораЦель создания и примеры таких препаратов
Воспроизведение действия (миметический эффект, агонизм)ЛС по физико-химической структуре очень похоже на сигнальную молекулу (гормон, медиатор). Рецептор, взаимодействуя с ЛС, активирует или тормозит соответствующую функцию клетки. Таким образом, ЛС имитирует действие естественного гормона или медиатораПрепараты оказывают более выраженное, стабильное и длительное по сравнению с медиатором действие. Так действуют адрено- и холиномиметики (смотри адренергические и холинергические средства) и некоторые другие препараты
Конкурентное действие (блокирующий, литический эффект, антагонизм)ЛС по структуре частично похоже на сигнальную молекулу, что позволяет взаимодействовать с рецептором, образуя над ним экран. Возникает конкурентная борьба за рецептор, в которой ЛС имеет “численное преимущество”! Поэтому естественный медиатор или гормон остается “не у дел”, и реакция не “запускается”Препараты позволяют корректировать (блокировать) физиологические реакции клетки. Примером таких препаратов являются адрено-, холино- и гистаминоблокаторы (смотри соответствующие главы)
Неконкурентное взаимодействиеМолекула ЛС связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на другом участке. При этом изменяется пространственная структура рецептора, что облегчает или затрудняет его контакт с естественным медиаторомБензодиазепины (оказывают анксиолитическое, седативное и противосудорожное действие), взаимодействуя с бензодиазепиновыми рецепторами, увеличивают прочность связи ГАМК (нейромедиатор с тормозящим действием на центральную нервную систему) с ГАМК-рецепторами

Воспроизведение действия (миметический эффект) наблюдается в тех случаях, когда молекула лекарственного вещества и естественная сигнальная молекула очень похожи: имеют высокое соответствие физико-химических свойств и структуры, обеспечивающих одинаковые внутриклеточные изменения. Результатом взаимодействия лекарства с рецептором в этом случае является активация или торможение определенной функции клеток в полном соответствии с действием эндогенной (внутренней) сигнальной молекулы. Подобным образом действуют очень многие аналоги гормонов и медиаторов (глава 3.1, глава 3.2, глава 3.3). Цель создания подобных лекарств – получение препаратов с более выраженным, стабильным и длительным по сравнению с медиатором (адреналин, ацетилхолин, серотонин и другие) действием, а также восполнение дефицита медиатора или гормона и, соответственно, их функций.

Конкурентное действие (блокирующий, литический эффект) встречается часто и присуще лекарствам, которые лишь частично похожи на сигнальную молекулу (например, медиатор). В этом случае лекарство способно связываться с одним из участков рецептора, но оно не вызывает комплекса реакций, сопутствующих действию естественного медиатора. Такое лекарство как бы создает над рецептором защитный экран, препятствуя его взаимодействию с естественным медиатором, гормоном и так далее. Конкурентная борьба за рецептор, называемая антагонизмом (отсюда и название лекарств – антагонисты), позволяет корректировать физиологические и патологические реакции. Подобным образом действуют адрено-, холино- и гистаминолитики (глава 3.2, глава 3.7, глава 3.10).

Следующий тип взаимодействия лекарства с рецептором называют неконкурентным, и в этом случае молекула лекарства связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на рядом расположенном участке, то есть действует опосредованно. При этом происходит изменение пространственной структуры рецептора, вызывающее раскрытие или закрытие его для естественного медиатора. В этих случаях рецептор для лекарства и рецептор для медиатора не совпадают, но находятся в одном рецепторном комплексе, и лекарство не вступает в прямое взаимодействие с рецептором. Ярким примером лекарств, действующих по этому типу, являются бензодиазепины – большая группа структурно родственных соединений, обладающих анксиолитическими, снотворными и противосудорожными свойствами (глава 3.1). Соединяясь со специфическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), лекарственное средство изменяет пространственную конфигурацию ГАМК-рецепторов и увеличивает прочность их связи с субстратом – гамма-аминомасляной кислотой. В результате усиливается тормозящее влияние этого медиатора на центральную нервную систему, чем обеспечивается лечебный эффект препаратов.

Некоторые лекарства способны повышать или понижать синтез естественных регуляторов (медиаторов, гормонов и так далее), влиять на процессы их накопления в клетках или ферментного разрушения. Подробнее такие эффекты будут рассмотрены, в частности, в главе 3.1, посвященной средствам, влияющим на функции центральной нервной системы.

Механизм действия лекарств на молекулярном и клеточном уровнях имеет очень большое значение, но не менее важно знать, на какие физиологические процессы влияет препарат, то есть каковы его эффекты на системном уровне. Возьмем, к примеру, лекарственные средства, снижающие артериальное давление. Один и тот же результат – снижение давления – может быть достигнут разными способами:

1) угнетением сосудодвигательного центра (магния сульфат);

2) угнетением передачи возбуждения в вегетативной нервной системе (ганглиоблокаторы);

3) ослаблением работы сердца, уменьшением его ударного и минутного объемов (бета-адреноблокаторы);

6) снижением активности системы ренин-ангиотензин (ингибиторы АПФ, антагонисты ангиотензиновых рецепторов) и другие.

Таким образом, одни и те же фармакологические эффекты (увеличение частоты сокращений сердца, расширение бронхов, устранение боли и так далее) можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Еще один пример – кашель. Если кашель обусловлен воспалением дыхательных путей, назначают противокашлевые средства периферического действия, причем, часто комбинируют их с отхаркивающими препаратами. Кашель у больных туберкулезом или при новообразованиях бронхов устраняют центрально действующие наркотические анальгетики (кодеин). А в детской практике в тяжелых случаях коклюша кашель лечат введением нейролептика хлорпромазина (препарат Аминазин).

Выбор лекарства, необходимого конкретному больному, осуществляет врач, руководствуясь знанием механизма действия лекарственных препаратов и обусловленных им терапевтических и побочных эффектов. Мы надеемся, что теперь вам стало понятнее, как сложен этот выбор, и какими знаниями и опытом надо обладать, чтобы правильно его сделать.

Но поскольку все органы и системы взаимосвязаны, то какие-либо изменения функции одного органа или системы вызывают сдвиги в работе других органов и систем. Кроме того, субстраты для взаимодействия могут находиться в разных органах, что также обеспечивает их взаимосвязь. Она проявляется как на физиологическом, так и на биохимическом уровнях, определяя неоднозначность и многогранность действия лекарств, наличие не только лечебного, но и побочного действия у большинства препаратов.

Так, расширение сосудов и понижение артериального давления при приеме нитроглицерина сопровождаются рефлекторным повышением частоты сердечных сокращений, а также обусловленной расширением сосудов головного мозга, так называемой нитратной головной болью. Атропин, обладающий выраженными спазмолитическими свойствами, за счет своего механизма действия может нарушить отток внутриглазной жидкости, вызвав приступ глаукомы, и так далее.

На взаимодействие лекарств с биологическим субстратами, а, соответственно, и на эффекты препарата, большое влияние оказывают прием пищи, алкоголя, возраст пациента, одновременный прием других препаратов и еще ряд факторов, роль которых рассматривается в следующих главах.

Виды действия лекарственных веществ

В фармакологии различают следующие виды действия лекарственных веществ:

· Местное действие. Это действие лекарственного вещества на месте его приложения до всасывания в кровь. Например, действие обволакивающих средств, местноанестезирующее (обезболивающее) действие при нанесении растворов местных анестетиков на слизистые оболочки. С целью местного действия применяются различные лекарственные формы: присыпки, примотки, мази, растворы и др. Местное действие в чистом виде встречается, однако редко, так как часть вещества все же всасывается в кровь или вызывает рефлекторные реакции.

· Резорбтивное действие. Это действие лекарств после всасывания в кровь и проникновения в ткани, независимо от путей его введения в организм. Так действует большинство лекарств.

· Общеклеточное действие. Это действие лекарственных веществ, направленное на все клетки организма.

· Избирательное действие связано со способностью лекарств накапливаться в отдельных тканях или с неодинаковой чувствительностью клеточных рецепторов к различным лекарствам. Например, сердечные гликозиды влияют избирательно на сердце, а нейролептики — на центральную нервную систему, некоторые курареподобные вещества вызывают избирательную блокаду холинорецепторов двигательных нервов и расслабление скелетной мускулатуры, причем в терапевтических дозах на другие рецепторы почти не оказывают действия (например, дитилин).

· Общее действие — это, когда лекарственные вещества не имеют выраженного избирательного действия (антибиотики).

· Прямое действие лекарства проявляется в тканях, с которыми оно непосредственно контактирует. Такое действие иногда называют первичной фармакологической реакцией.

· Косвенное действие является ответом на первичную фармакологическую реакцию других органов. Например, сердечные гликозиды, усиливая сокращения сердца (прямое действие), улучшают кровообращение и функцию других органов, например, почек и печени (косвенное действие).

· Рефлекторное действие является разновидностью косвенного действия, в котором участвует нервная система (рефлекторная дуга). Оно может возникать при резорбтивном и местном действии лекарств. Например, внутривенное введение цититона рефлекторно возбуждает дыхание; горчичник, приложенный к коже, рефлекторно улучшает функцию внутренних органов.

· Главное и побочное действия. Под главным понимают основное, желательное действие лекарства, на которое рассчитывает врач. Побочное действие является, как правило, нежелательным, вызывающим осложнения. Например, главным для морфина является обезболивающее действие, а его способность вызывать эйфорию и наркоманию расценивается как существенный недостаток. Побочное действие может носить положительный характер. Например, кофеин оказывает стимулирующее действие на центральную нервную систему, а также усиливает работу сердца. Побочное действие может носить и нежелательный (отрицательный) характер. Некоторые слабительные средства при своем действии вызывают боли в кишечнике. Для некоторых лекарств, обладающих многосторонними фармакологическими свойствами, главное и побочное действия могут меняться местами в зависимости от конкретной цели использования такого лекарства.

· Обратимое действие — это временный фармакологический эффект, который прекращается после выведения лекарственного вещества из организма или после его разрушения. Например, после наркоза функция центральной нервной системы полностью восстанавливается.

· Необратимое действие выражается в глубоких структурных нарушениях клеток и их гибели, вызываемых, например, прижиганием бородавок нитратом серебра, или необратимое ингибирование фермента ацетилхолинэстеразы фосфорорганическими соединениями.

Вопросы для самоконтроля

1. Содержание фармакологии и ее задачи.

2. Связь фармакологии с другими науками.

3. История развития науки.

4. Научные направления фармакологии.

5. Источники и пути получения лекарственных веществ.

6. Общие закономерности взаимодействия лекарственных веществ с организмом.

7. Реактивность организма, ее роль в развитии болезни.

8. Энтеральные пути введения лекарственных средств и их сравнительная характеристика.

9. Парентеральные пути введения лекарственных веществ и их сравнительная характеристика.

10. Преимущества и недостатки энтеральных и парентеральных путей введения.

Читать еще:  Показания к приему препарата

11. Какие вопросы изучает раздел общей фармакологии фармакокинетика.

12. Механизмы всасывания лекарственных веществ из желудка и кишечника.

13. Что характерно для пассивной диффузии лекарства через мембраны клеток.

14. Что характерно для активного транспорта лекарства через мембраны клеток.

15. Распределение лекарственных веществ в организме.

16. .Понятие о биотрансформации.

17. Механизмы биотрансформации лекарственных веществ в печени.

18. Пути выведения лекарственных веществ из организма.

19. Что такое биодоступность и чем она определяется.

20. Какие вопросы изучает раздел общей фармакологии фармакодинамика.

21. Основные мишени действия лекарственных веществ.

22. Виды действия лекарственных веществ.

Список использованной литературы

1. Рабинович М.И. Общая фармакология: Учебное пособие. 2-е изд., испр. и доп. / М.И.Рабинович, Г.А. Ноздрин, И.М. Самородова, А.Г. Ноздрин – СПб.: Издательство «Лань», 2006. – 272 с.

2. Седов Ю.Д. Техника введения лекарственных веществ животным / Ю.Д. Седов. – Ростов н /Д: Феникс, 2014. – 93 с.

3. Субботин В.М. Ветеринарная фармакология / В.М.Субботин, И.Д. Александров – М.: КолосС, 2004. – 720 с.

4. Соколов В.Д. Фармакология / В.Д. Соколов — СПб.: Издательство «Лань», 2010. – 560 с.

5. Толкач, Н.Г. Ветеринарная фармакология / Н.Г. Толкач, И.А. Ятусевич, А.И. Ятусевич, В.В. Петров. – Минск: ИВЦ Минфина, 2008. – 685 с.

6. Фармакология. – М.: ВИНИТИ, 2000 – 2009.

7. Харкевич Д.А. Фармакология: Учебник / Д.А. Харкевич. — 9-е изд., перераб., доп. и испр. — М.: ГЭОТАР — Медиа, 2006. — 736 с.

СОДЕРЖАНИЕ

2. История развития фармакологии 5

3. Научные направления фармакологии 10

4. Источники и пути получения лекарственных веществ 12

5. Общие закономерности взаимодействия лекарственных

веществ с организмом 15

6. Реактивность организма, ее роль в развитии болезни и

реакции на лекарство 17

7. Пути введения лекарственных средств в организм 17

8. Фармакокинетика 22

8.1. Всасывание лекарственных веществ 23

8.2. Распределение лекарственных веществ в организме 27

8.3. Биотрансформация лекарств в организме 29

8.4. Выведение лекарственных веществ из организма 34

8.5. Понятие о биологической доступности лекарств 37

9. Фармакодинамика 39

9.1. Основные мишени действия лекарственных веществ 40

9.2. Виды действия лекарственных веществ 53

10. Вопросы для самоконтроля 55

11. Список использованной литературы 56

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8591 — | 7432 — или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

ВИДЫ ФАРМАКОЛОГИЧЕСКОГО ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

При назначении лекарственных средств (ЛС), в зависимости от их свойств и природы происхождения, локализации их действия, могут проявляться различные виды фармакологического действия.
По степени выраженности фармакологического эффекта и клинического его проявления различают основное (главное) и побочное действие ЛС.

Преферанская Нина Германовна
Доцент кафедры фармакологии фармфакультета Первого МГМУ им. И.М. Сеченова, к.фарм.н.

Появлению нежелательных побочных реакций при использовании лекарственного средства способствуют:

  1. Неправильно подобранная терапевтическая доза, без учета индивидуальных особенностей пациента, его сопутствующих заболеваний, возраста, веса и роста.
  2. Передозировка лекарственного средства вследствие нарушения режима дозирования, кумуляции или заболевания органов выделения.
  3. Длительное необоснованное лечение.
  4. Резкая (внезапная) отмена препарата, с обострением основного или сопутствующего заболевания.
  5. Прием лекарства без учета взаимодействия его с другими совместно применяемыми ЛС.
  6. Нарушение питания, неправильный образ жизни; употребление наркотиков, алкоголя и курение.

Основное (главное) действие — это фармакологическая активность лекарственного средства, ради которой оно применяется в клинической практике с профилактической или лечебной целью при конкретном заболевании. Например, основное действие Клофелина — гипотензивное, для Морфина характерно обезболивающее действие, Но–шпа — обладает спазмолитическим эффектом. У ацетилсалициловой кислоты в зависимости от показания к применению и дозирования два основных действия — противовоспалительное и антиагрегантное.

В зависимости от пути введения и локализации фармакологических эффектов проявляются другие виды фармакологического действия ЛС.

Резорбтивное действие (лат. resorbere — всасывание, поглощение) развивается после всасывания лекарства в кровь, его распределения и поступления в ткани организма. Лекарства после всасывания распределяются в тканях организма и взаимодействуют с молекулярной мишенью (рецептором, ферментом, ионным каналом) или другим субстратом. В результате такого взаимодействия возникает фармакологический эффект/эффекты. Так действуют многие лекарства — «Снотворные средства», «Опиоидные и неопиоидные анальгетики», «Антигипертензивные ЛС» и др.

Местное действие развивается при непосредственном контакте лекарства с тканями организма, например, с кожей, слизистыми оболочками, с раневой поверхностью. К местному действию также относится реакция тканей (подкожной клетчатки, мышц и др.) на инъекцию лекарств. Местное действие развивается чаще всего при применении раздражающих, местноанестезирующих, вяжущих, прижигающих и др. лекарств. Местным действием обладают антациды — Альмагель, Гевискон форте, Маалокс, которые нейтрализуют соляную кислоту, повышают рН желудка и снижают активность пепсина. Гастропротекторы — Де–нол, Вентер, обладая хелатным действием, создают на поверхности слизистой оболочки защитную пленку и защищают внутренний слой полости желудка от агрессивных повреждающих факторов.

Многие ЛС в зависимости от применяемой лекарственной формы (таблетки, капсулы, драже, растворы и суспензии для внутреннего применения) и пути введения оказывают резорбтивное действие, тогда как при применении этого же лекарства в другой лекарственной форме (мазь, гель, линимент, глазные капли) возникает местное действие. Например, нестероидные противовоспалительные препараты: Диклофенак выпускается не только в таблетках, растворе для в/м введения, которые вызывают резорбтивный эффект, но и для наружного применения в виде 1% геля «Диклоран», 2% мази «Ортофен» или «Диклофенак», в глазных каплях 0,1% раствор «Дикло–Ф», оказывающих местное противовоспалительное действие. При применении суппозиториев под ТН «Наклофен», «Дикловит» возникает как местный, так и резорбтивный эффект. Другой препарат — «Нимесулид» — выпускается в виде таблеток (резорбтивное действие) и геля для наружного применения под ТН «Найз» (местное действие).

Лекарственные средства раздражающего действия развивают эффекты как на месте введения, так и на расстоянии. Эти эффекты обусловлены рефлекторными реакциями и проявляют рефлекторное действие. Возбуждаются чувствительные нервные окончания (интерорецепторы) слизистых оболочек, кожи и подкожных образований, импульсы по афферентным нервным волокнам достигают центральной нервной системы, возбуждают нервные клетки, а далее по эфферентным нервам действие распространяется на орган/органы или на весь организм. Например, при применении местнораздражающих, отвлекающих препаратов — «Горчичников», геля «Горчичного форте» или «Перцового пластыря» и др. Рефлекторное действие может развиваться на расстоянии от места первоначального контакта лекарственного вещества с тканями организма, при участии всех звеньев рефлекторной дуги. Так действуют пары аммиака (нашатырный спирт 10%) при обмороке. При вдыхании раздражаются чувствительные рецепторы оболочки носа, возбуждение распространяется по центростремительным нервам и передается в ЦНС, возбуждаются сосудодвигательный и дыхательный центры продолговатого мозга. Далее импульсы по центробежным нервам достигают легких и сосудов, усиливается вентиляция в легких, повышается артериальное давление и восстанавливается сознание. При этом следует помнить, что большие количества раствора аммиака могут вызвать нежелательные реакции — резкое урежение сокращений сердца и остановку дыхания.

В зависимости от механизма связывания действующих веществ, активных метаболитов с рецепторами или другими «мишенями», действие лекарства может быть прямым, косвенным (вторичным), опосредованным, избирательным (селективным), преимущественным или неизбирательным (неселективным).

Прямое (первичное) действие оказывают препараты, прямо воздействующие на рецепторы. Например: адренергические средства (Адреналин, Сальбутамол) непосредственно стимулируют адренорецепторы, антиадренергические (Пропранолол, Атенолол, Доксазозин) блокируют эти рецепторы и препятствуют действию на них медиатора норадреналина и др. катехоламинов, циркулирующих в крови. Холинергические средства (Пилокарпин, Ацеклидин) стимулируют периферические М–холинорецепторы мембран эффекторных клеток и вызывают такие же эффекты, как и при раздражении вегетативных холинэргических нервов. Антихолинергические средства (Атропин, Пирензепин, Бускопан) блокируют М-холинорецепторы и препятствуют взаимодействию с ними медиатора ацетилхолина.

Косвенное (вторичное) действие возникает, когда лекарственное средство, изменяя функции одного органа, воздействует на другой орган. У больных, страдающих сердечной недостаточностью, часто возникают отеки тканей. Кардиотонические средства, сердечные гликозиды наперстянки (Дигоксин, Целанид) оказывают первичные эффекты, увеличивая силу сердечных сокращений и повышая сердечный выброс. Улучшая кровообращение во всех органах и тканях, сердечные гликозиды усиливают выведение почками жидкости из организма, что приводит к уменьшению венозного застоя и снятию отеков, — эти эффекты являются вторичными.

Непрямое (опосредованное) действие возникает в результате воздействия лекарства на «мишени» через вторичные передатчики (мессенджеры), опосредованно формирующие конкретный фармакологический эффект. Например, симпатолитик «Резерпин» блокирует везикулярный захват дофамина и норадреналина. Уменьшается поступление дофамина в везикулы (лат. vesicular — пузырек), морфологический элемент синапса, наполненный медиатором. Снижается синтез нейротрансмиттера — норадреналина и его высвобождение из пресинаптической мембраны. В постганглионарных симпатических нервных окончаниях истощается депо норадреналина и нарушается передача возбуждения с адренергических нервов на эффекторные клетки; возникает стойкое снижение артериального давления. Антихолинэстеразные средства (Неостигмина метилсульфат, Дистигмина бромид) ингибируют фермент ацетилхолинэстеразу, препятствуя энзиматическому гидролизу медиатора ацетилхолина. Происходит накопление эндогенного ацетилхолина в холинергических синапсах, что значительно усиливает и удлиняет действие медиатора на мускариночувствительные (М-), никотиночувствительные (Ν-) холинорецепторы.

ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ. «МИШЕНИ» ДЛЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Влияние лекарственных веществ на органы, ткани, клетки обусловлено воздействием на биохимические субстраты, от которых зависит та или иная функция. Современные методы исследования позволяют выяснить, где находится субстрат-мишень, с которым взаимодействует лекарственное вещество, т.е. где локализовано его действие. Благодаря современным техническим средствам и усовершенствованным методическим приемам локализацию действия веществ можно установить не только на системном и органном, но и на клеточном, молекулярном и других уровнях.

Например, препараты наперстянки действуют на

сердечно-сосудистую систему (системный уровень), на сердце

(органный уровень), на мембраны кардиомиоцитов (клеточный

уровень), на Na , K — АТФазу (молекулярный уровень).

Механизм действия — это способ взаимодействия лекарственного вещества со специфическими участками связывания в организме.

Получение одного и того же фармакологического эффекта возможно с помощью нескольких препаратов, обладающих различными механизмами действия.

«Мишенями» для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.

РЕЦЕПТОРЫ

Рецепторы (от лат. recipere — получать) представляют собой биологические макромолекулы, которые предназначены для связывания с эндогенными лигандами (нейротрансмиттерами, гормонами, факторами роста). Рецепторы могут взаимодействовать также с экзогенными биологически активными веществами, в т.ч. и с лекарственными.

При взаимодействии лекарственного вещества с рецептором развивается цепь биохимических превращений, конечным итогом которых является фармакологический эффект. Рецепторы имеют структуру липопротеинов, гликопротеинов, нуклеопротеинов, металлопротеинов. Рецепторную функцию могут выполнять ферменты, транспортные и структурные белки. В каждом рецепторе имеются активные центры, представленные функциональными группами аминокислот, фосфатидов, нуклеотидов и др.

Взаимодействие «вещество — рецептор» осуществляется за счет межмолекулярных связей.

Ковалентные связи — самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов. Ковалентные связи возникают главным образом при действии токсических доз лекарственных веществ или ядов, и разорвать эти связи во многих случаях не удается — наступает необратимое действие. Основываясь на принципе ковалентной связи, П.Эрлих в 1910 г. впервые создал органические препараты мышьяка и предложил их для лечения сифилиса. Эти соединения вступают в прочную ковалентную связь с SН-группами структурных белков и ферментов микроорганизмов, вследствие чего нарушается их функция и происходит гибель микроорганизмов.

Ионные связи возникают между ионами, несущими разноименные заряды (электростатическое взаимодействие). Этот вид связи характерен для ганглиоблокаторов, курареподобных средств и ацетилхолина.

Ион-дипольные и диполь-дипольные связи возникают в электрически нейтральных молекулах лекарственных веществ, чаще всего имеющих неодинаковые атомы. Пара общих электронов бывает сдвинута в сторону какого-либо одного атома и поэтому создает около него электроотрицательность, а у другого атома в силу этого создается электроположительность. Таким образом возникает полярность молекул.

В молекулах лекарственных веществ, попадающих в электрическое поле клеточных мембран или находящихся в окружении ионов, происходит образование индуцированного диполя. Поэтому дипольные связи лекарственных веществ с биомолекулами являются очень распространенными.

Водородные связи по сравнению с ковалентными являются слабыми, но их роль в действии лекарственных веществ весьма существенна. Атом водорода способен связывать атомы кислорода, азота, серы, галогенов. Для возникновения этой связи необходимо присутствие лекарственного вещества вблизи молекулы-мишени на расстоянии не более 0,3 нм, а реагирующий атом в молекуле лекарственного вещества должен находиться на одной прямой с группой ОН или NН2 в молекуле-мишени.

Вандерваальсовы связи возникают между двумя любыми атомами, входящими в лекарственное вещество и молекулы организма, если они будут находиться на расстоянии не более 0,2 нм. При увеличении расстояния связи резко ослабевают.

Гидрофобные связи возникают при взаимодействии неполярных молекул в водной среде.

Лекарственные вещества, как правило, взаимодействуют с молекулами клеток и жидких сред организма с помощью сравнительно слабых связей, поэтому действие их в терапевтических дозах является обратимым.

Выделяют четыре типа рецепторов:

1. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они связаны с плазматической мембраной клеток, фосфорилируют белки клеток и изменяют их активность. По такому принципу устроены рецепторы к инсулину, лимфокинам, эпидермальному и тромбоцитарному факторам роста.

2. Рецепторы, осуществляющие контроль за функцией ионных

каналов. Рецепторы ионных каналов обеспечивают проницаемость

мембран для ионов. Н-холинорецепторы, рецепторы глутаминовой и

аспарагиновой кислот увеличивают проницаемость мембран для ионов

Na , K , Ca , вызывая деполяризацию и возбуждение функции клеток.

ГАМКА-рецепторы, глициновые рецепторы увеличивают проницаемость

мембран для Cl , вызывая гиперполяризацию и торможение функции

3. Рецепторы, ассоциированные с G-белками. При возбуждении

Читать еще:  Прием виагры при эректильной дисфункции

этих рецепторов влияние на активность внутриклеточных ферментов

опосредуется через G-белки. Изменяя кинетику ионных каналов и

синтез вторичных мессенджеров (цАМФ, цГМФ, ИФ3, ДАГ, Са ),

G-белки регулируют активность протеинкиназ, которые обеспечивают

внутриклеточное фосфорилирование важных регуляторных белков и

развитие разнообразных эффектов. К числу таких рецепторов

относятся рецепторы для полипептидных гормонов и медиаторов

(м-холинорецепторы, адренорецепторы, гистаминовые рецепторы).

Рецепторы 1-3 типов локализованы на цитоплазматической мембране.

4. Рецепторы — регуляторы транскрипции ДНК. Эти рецепторы являются внутриклеточными и представляют собой растворимые цитозольные или ядерные белки. С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны. Функция рецепторов — активация или ингибирование транскрипции генов.

Рецепторы, обеспечивающие проявление действия определенных веществ, называют специфическими.

По отношению к рецепторам лекарственные вещества обладают аффинитетом и внутренней активностью.

Аффинитет (от лат. affinis — родственный) — сродство лекарственного вещества к рецептору, приводящее к образованию комплекса «вещество — рецептор». Внутренняя активность — способность вещества при взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект.

В зависимости от выраженности аффинитета и наличия внутренней активности лекарственные вещества разделяют на две группы.

1. Агонисты (от греч. agonistes — соперник, agon — борьба) или миметики (от греч. mimeomai — подражать) — вещества, обладающие аффинитетом и высокой внутренней активностью. Они взаимодействуют со специфическими рецепторами и вызывают в них изменения, приводящие к развитию определенных эффектов. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект. Частичные агонисты при взаимодействии с рецепторами вызывают меньший эффект.

2. Антагонисты (от греч. antagonisma — соперничество, anti — против, agon — борьба) или блокаторы — вещества с высоким аффинитетом, но лишенные внутренней активности. Они связываются с рецепторами и препятствуют действию эндогенных агонистов (медиаторов, гормонов).

Если антагонисты занимают те же рецепторы, что и агонисты, то их называют конкурентными антагонистами.

Если антагонисты занимают другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентные антагонисты.

Некоторые лекарственные вещества сочетают в себе способность возбуждать один подтип рецепторов и блокировать другой. Их называют агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом m- и агонистом d- и k-опиоидных рецепторов.

ИОННЫЕ КАНАЛЫ

Участками связывания лекарственных веществ могут являться ионные каналы. Эти каналы представляют основные пути, по которым ионы проникают через клеточные мембраны.

Естественными лигандами ионных каналов являются медиаторы:

ацетилхолин, гамма-аминомасляная кислота (ГАМК), возбуждающие

аминокислоты (аспарагиновая, глутаминовая, глицин). Увеличение

трансмембранной проводимости определенных ионов через

соответствующие каналы приводит к изменению электрического

потенциала мембраны. Так, ацетилхолин способствует открытию

ионного канала N-холинорецептора, в результате чего Na проходит в

клетку, вызывая деполяризацию мембраны и развитие потенциала

действия. ГАМК способствует открытию ионного канала Cl , что

вызывает гиперполяризацию мембраны и развитие синаптического

Важную роль в действии лекарственных веществ играет их способность имитировать или блокировать действие эндогенных лигандов, регулирующих ток ионов через каналы плазматической мембраны.

В середине ХХ в. было установлено, что местные анестетики

блокируют потенциалозависимые Na -каналы. К числу блокаторов

Na -каналов относятся и многие противоаритмические средства. Кроме

того, было показано, что ряд противоэпилептических средств

(дифенин, карбамазепин) также блокируют потенциалозависимые

Na -каналы и с этим связана их противосудорожная активность. Ионы

Са принимают участие во многих физиологических процессах: в

сокращении гладких мышц, в проведении возбуждения по проводящей

системе сердца, в секреторной активности клеток, в функции

тромбоцитов и др. Вхождение ионов Са внутрь клетки через

потенциалозависимые Са -каналы нарушает группа лекарственных

препаратов, получившая название «блокаторы Са -каналов».

Препараты этой группы широко применяются для лечения

ишемической болезни сердца, сердечных аритмий, гипертонической

болезни. Са -каналы гетерогенны, и поэтому интерес представляет

поиск их блокаторов с преимущественным действием на сердце и

сосуды (особенно разных областей: периферических, мозга, сердца и

др.). Так, верапамил оказывает более сильное влияние на ино-,

хронотропную функцию сердца и на атриовентрикулярную проводимость

и в меньшей степени на гладкие мышцы сосудов; нифедипин оказывает

большее воздействие на гладкие мышцы сосудов и меньшее — на

функцию сердца; дилтиазем в равной степени влияет на гладкие мышцы

сосудов и проводящую систему; нимодипин обладает избирательным

В последние годы большое внимание привлекают вещества,

регулирующие функцию К -каналов. Среди лекарственных веществ

имеются как активаторы, так и блокаторы К -каналов.

Активаторы К -каналов участвуют в механизме их открытия и

выхода ионов К из клетки. Если этот процесс происходит в гладких

мышцах сосудов, то развивается гиперполяризация мембраны, тонус

мышц уменьшается и снижается артериальное давление. Такой механизм

гипотензивного действия характерен для миноксидила.

Блокаторы К -каналов препятствуют их открытию и поступлению К

в клетки. Антиаритмический эффект амиодарона и соталола обусловлен

блокадой К -каналов клеточных мембран миокарда.

Блокада АТФ-зависимых К -каналов в поджелудочной железе приводит к

повышению секреции инсулина. По такому принципу действуют

противодиабетические средства группы сульфонилмочевины

(хлорпропамид, бутамид и др.).

ФЕРМЕНТЫ

Важной «мишенью» для действия лекарственных веществ являются ферменты. В медицине широко применяются группы лекарственных средств, снижающие активность определенных ферментов. Блокада фермента моноаминоксидазы приводит к снижению метаболизма катехоламинов и повышению их содержания в ЦНС. На этом принципе основано действие антидепрессантов — ингибиторов МАО (ниаламида, пиразидола). Механизм действия нестероидных противовоспалительных средств обусловлен ингибированием фермента циклооксигеназы и снижением биосинтеза простагландинов.

В качестве гипотензивных средств используются ингибиторы ангиотензинпревращающего фермента (каптоприл, эналаприл, периндоприл и др.). Антихолинэстеразные средства, блокирующие фермент ацетилхолинэстеразу и стабилизирующие ацетилхолин, применяются для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

ТРАНСПОРТНЫЕ СИСТЕМЫ

Лекарственные средства могут воздействовать на транспортные

системы молекул, ионов, медиаторов. Транспортную функцию выполняют

так называемые транспортные белки, переносящие вышеуказанные

молекулы и ионы через клеточную мембрану. Эти белки имеют

«распознающие участки» — места связывания эндогенных веществ, с

которыми могут взаимодействовать лекарственные средства. Блокада

Н , К -АТФазы секреторной мембраны париетальных клеток

(«протонного насоса») прекращает поступление ионов водорода в

полость желудка, что сопровождается угнетением образования HCl.

Такой механизм действия характерен для омепразола, пантопразола,

которые применяются для лечения язвенной болезни желудка и

Перспективной «мишенью» для действия лекарственных средств являются гены. С помощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов. Учитывая полиморфизм генов, такая задача достаточно сложна. Тем не менее исследования в области генной фармакологии получают все более широкое развитие.

Доцент кафедры фармакологии

фармацевтического факультета ММА

Подписано в печать

Ассоциация содействует в оказании услуги в продаже лесоматериалов: покупка горбыль по выгодным ценам на постоянной основе. Лесопродукция отличного качества.

На каком принципе основывается воздействие препарата

Влияние лекарственных средств на организм животных зависит от способа, механизма, вида действия их, от доз, используемой формы, путей введения и др. Знание данных вопросов играет существенную роль при назначении лекарств с лечебной и профилактической целью.

Способы действия лекарственных средств неодинаковы. Одни лекарства оказывают местное влияние, другие рефлекторное, третьи резорбтивное.

Под местным действием понимают изменения, происходящие в зоне контакта лекарства с тканями (гиперемия, размягчение, анемия, некроз и др.). Однако эти реакции имеют рефлекторное происхождение, поскольку возникают лишь при воздействии на эфферентные нервы (в случае выключения последних местные процессы не развиваются).

Рефлекторное действие лекарственных средств наиболее отчетливо проявляется в случае применения их в местах с наличием большого количества рецепторов (рефлекторные зоны). При этом, кроме местных изменений, возникают изменения в тех органах, в которые лекарство непосредственно не вводилось.

Резорбтивное действие наступает после всасывания лекарственных средств в кровь. В основе его также лежит рефлекторный механизм. Однако в данном случае реакция развивается вследствие раздражения рецепторов внутренних органов (интерорецепторов).

Для достижения резорбтивного действия применяют такие лекарства, которые хорошо всасываются в кровь (сердечно-сосудистые, наркотические и др.). При этом изменения, вызываемые ими, зависят от пути их введения, количества, концентрации и т. д.

Механизм действия лекарственных средств на организм зависит от их физико-химических свойств, от состояния организма в целом и его центральной нервной системы, от условий окружающей среды. В организме лекарства вступают в реакцию с нервными рецепторами, ферментами, клетками, белками, медиаторами и вызывают изменения функции органов и систем. При этом реакция организма на фармакологическое средство может носить биологический, химический или физический характер.

Для биологической реакции характерна, например, инактивация либо активация медиаторов, ферментов, витаминов, возбуждение или угнетение нервных рецепторов, фагоцитоза и т. д.

Химические реакции проявляются изменениями рН среды, окислением, дегидратацией, осаждением или свертыванием белков цитоплазмы и др. Они наиболее четко регистрируются в случае применения кислот, щелочей, солей тяжелых металлов.

Физическое воздействие лекарственных средств заключается в изменении в клетках органов и тканей ионного равновесия, осмотического давления, поверхностного натяжения, проницаемости мембран.

Следует отметить, что одно и то же вещество обычно одновременно влияет на различные функции органов и систем. Степень выраженности возникающих в них изменений бывает не одинаковой, а нередко даже прямо противоположной. При этом к лечебному свойству лекарства относят главным образом те изменения, которые наиболее резко проявляются по сравнению с остальными.

Лекарственные средства вызывают возбуждение (усиление) или угнетение (ослабление) функций.

Возбуждение может привести к восстановлению, стимулированию и перераздражению функциональной деятельности органов или тканей.

Восстановление заключается в повышении ослабленных функций органов или систем больного животного до физиологической нормы. Например, при сниженной функции сердечной деятельности применяют кофеин, камфору, с целью устранения гипотонии или атонии преджелудков назначают настойку чемерицы.

Стимулирование состоит в повышении функциональной деятельности органов или систем здорового животного до максимальных физилогических показателей. Так, с помощью фармакологических средств можно повысить гемопоэз, регенерацию тканей, секретертную деятельность желез, рост и развитие животных и т. д.

Перераздражение — это усиление функции органов или систем сверх физиологической нормы. В этом случае в органах и тканях развиваются патологические процессы. Например, применение больших доз камфоры, алкоголя приводит к возбуждению и дистрофическим изменениям в центральной нервной системе. Поэтому при значительном и длительном нерераздражении может наступить смерть.

Угнетение характеризуется ослаблением тех или иных функций организма по сравнению с исходным состоянием. При этом возможно ослабление повышенных функций до физиологической нормы (успокаивающее или седативное действие), ослабление физиолоически нормальных функций и полное прекращение их. Такое действие оказывают нейролептические, наркотические и другие средства. В больших дозах они полностью подавляют функции систем и органов вследствие глубоких изменений, происходящих при этом в центральной нервной системе.

Виды действия лекарственных средств на организм отличаются большим разнообразием.

Одни из лекарств оказывают избирательное действие, т. е. влияют лишь на определенный орган, ткань или биохимический процесс. Например, наркотические средства воздействуют только на центральную нервную систему, местноанестезирующие — на чувствительные нервные волокна, сердечные гликозиды — на сердце.

Ряд лекарственных средств оказывает на организм общее действие, проявляющееся изменениями функций многих тканей и органов. Так влияют биологические стимуляторы, витамины и другие лекарства.

Значительная часть лекарственных средств оказывает прямое влияние на ткани и органы, участвуя в первичных реакциях, происходящих в их клетках, либо косвенное — когда развиваются изменения в органах и системах, не имевших непосредственного контакта с лекарством.

Вместе с тем действие лекарственных средств подразделяют на главное, под которым понимается его наиболее выраженный эффект, и побочное, если наряду с основным эффектом возникают нежелательные изменения. Так, наркоз — главное действие, а возможная при этом остановка сердца или дыхания — побочное.

Многие лекарственные средства оказывают также этиотропное действие, т. е. влияют на факторы, вызывающие заболевания. Например, при инфекционных болезнях эффективны специфические лечебные сыворотки, антибиотики, при инвазионных— противопаразитарные средства, при витаминной недостаточности — витамины.

Часть лекарственных средств оказывает патогенетическое действие, которое заключается в повышении активности защитных реакций организма. Они нормализуют нервно-гуморальную и эндокринную регуляцию, обмен веществ, биохимические процессы. При многих заболеваниях с этой целью широко применяют новокаиновую блокаду, успокаивающие и нейролептические средства, лекарства, улучшающие сердечную деятельность, и др.

Действие лекарственных средств при одновременном применении может проявляться в виде синергизма или антагонизма.

Синергизм — одновременное влияние лекарственных средств на организм в одном направлении, что дает больший лечебный эффект, чем при назначении каждого из них в отдельности.

Синергизм бывает прямой (лекарственные средства действуют на одну систему; например, хлоралгидрат и алкоголь, влияя на одни и те же нервные клетки, вызывают наркоз) и непрямой (усиление эффекта происходит через влияние на разные системы; к примеру, атропин расширяет зрачок путем выключения функции холинергического нерва, а адреналин — через активизирование функции адренергического нерва).

Антагонизм — противоположное действие одновременно применяемых лекарственных средств. При этом возможно полное выключение или ослабление действия одних средств другими. Различают физический, химический и физиологический антагонизмы.

Физический антагонизм наблюдается, когда одно лекарство механически препятствует всасыванию другого. Например, адреналин, суживая сосуды, ограничивает поступление в кровь многих лекарственных средств.

Химический антагонизм обусловливается взаимодействием одного лекарственного средства с другим, в результате чего образуются неактивные продукты (щелочи нейтрализуют кислоты и, наоборот, кислоты — щелочи) или продукты с иными фармакологическими свойствами.

Физиологический антагонизм (функциональный) — это проти­воположное действие лекарственных средств на одни и те же реакции организма. Он может быть прямым, косвенным, двусторонним и односторонним.

Читать еще:  Полезные свойства бишофита

При прямом антагонизме лекарства действуют на одну и ту же систему противоположным образом (атропин угнетает, а ареколин возбуждает парасимпатическую нервную систему; в результате первый ослабляет, а второй стимулирует перистальтику кишечника).

При косвенном антагонизме лекарственные средства действуют в противоположных направлениях через разные системы (адреналин возбуждает окончания симпатической, а пилокарпин — парасимпатической нервной системы; в итоге первый вызывает расширение, второй — сужение зрачка).

Двусторонний антагонизм характеризуется тем, что одно средство ослабляет (снимает) действие другого, а последнее в свою очередь оказывает аналогичное влияние на действие первого. Так взаимодействуют, например, стрихнин и хлоралгидрат. Односторонний антагонизм развивается в том случае, если действие одного лекарственного средства подавляет действие другого (атропин снимает влияние ареколина).

На принципе антагонизма лекарственных средств основано применение противоядий при различных отравлениях.

Повторное введение лекарственных средств нередко вызывает в организме кумуляцию (накопление их), привыкание и аллергию к ним.

Различают материальную и функциональную кумуляции

Материальная кумуляция развивается при назначении лекарственных средств, медленно разрушающихся и надолго задерживающихся в тканях и органах. В повышенных количествах они становятся токсичными для организма. Так действуют многие сердечные глюкозиды, бромиды, препараты мышьяка и др.

Функциональная кумуляция наступает в результате применения лекарственных средств, быстро выделяющихся из организма, но успевающих вызывать в нем медленно обратимые явления. После каждого очередного введения такого лекарства происходит суммирование ранее возникших изменений с новыми. В этой связи в органах и тканях нередко развиваются патологические процессы. Например, после однократного применения фла-вокридина в лечебной дозе развивается воспаление почек, которое резко усиливается при вторичном введении его через сутки.

Для предупреждения нежелательных эффектов лекарственные средства, оказывающие кумулятивное действие, назначают с большими интервалами и при повторных введениях их дозу уменьшают.

В случае привыкания организма к тому или иному лекарственному средству действие последнего при повторном применении ослабляется или полностью подавляется. Это обусловливается выработкой организмом способности быстро выделять лекарства во внешнюю среду, либо разрушать их, или превращать в неактивные соединения. Например, при многократном применении атропина в организме увеличивается количество фермента, инактивирующего его. Очень быстро привыкают к лекарствам микробы, гельминты и другие паразиты. Многие из них могут передавать по наследству устойчивость к тому или другому лекарственному средству.

ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ. «МИШЕНИ» ДЛЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Влияние лекарственных веществ на органы, ткани, клетки обусловлено воздействием на биохимические субстраты, от которых зависит та или иная функция. Современные методы исследования позволяют выяснить, где находится субстрат-мишень, с которым взаимодействует лекарственное вещество, т.е. где локализовано его действие. Благодаря современным техническим средствам и усовершенствованным методическим приемам локализацию действия веществ можно установить не только на системном и органном, но и на клеточном, молекулярном и других уровнях.

Например, препараты наперстянки действуют на

сердечно-сосудистую систему (системный уровень), на сердце

(органный уровень), на мембраны кардиомиоцитов (клеточный

уровень), на Na , K — АТФазу (молекулярный уровень).

Механизм действия — это способ взаимодействия лекарственного вещества со специфическими участками связывания в организме.

Получение одного и того же фармакологического эффекта возможно с помощью нескольких препаратов, обладающих различными механизмами действия.

«Мишенями» для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.

РЕЦЕПТОРЫ

Рецепторы (от лат. recipere — получать) представляют собой биологические макромолекулы, которые предназначены для связывания с эндогенными лигандами (нейротрансмиттерами, гормонами, факторами роста). Рецепторы могут взаимодействовать также с экзогенными биологически активными веществами, в т.ч. и с лекарственными.

При взаимодействии лекарственного вещества с рецептором развивается цепь биохимических превращений, конечным итогом которых является фармакологический эффект. Рецепторы имеют структуру липопротеинов, гликопротеинов, нуклеопротеинов, металлопротеинов. Рецепторную функцию могут выполнять ферменты, транспортные и структурные белки. В каждом рецепторе имеются активные центры, представленные функциональными группами аминокислот, фосфатидов, нуклеотидов и др.

Взаимодействие «вещество — рецептор» осуществляется за счет межмолекулярных связей.

Ковалентные связи — самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов. Ковалентные связи возникают главным образом при действии токсических доз лекарственных веществ или ядов, и разорвать эти связи во многих случаях не удается — наступает необратимое действие. Основываясь на принципе ковалентной связи, П.Эрлих в 1910 г. впервые создал органические препараты мышьяка и предложил их для лечения сифилиса. Эти соединения вступают в прочную ковалентную связь с SН-группами структурных белков и ферментов микроорганизмов, вследствие чего нарушается их функция и происходит гибель микроорганизмов.

Ионные связи возникают между ионами, несущими разноименные заряды (электростатическое взаимодействие). Этот вид связи характерен для ганглиоблокаторов, курареподобных средств и ацетилхолина.

Ион-дипольные и диполь-дипольные связи возникают в электрически нейтральных молекулах лекарственных веществ, чаще всего имеющих неодинаковые атомы. Пара общих электронов бывает сдвинута в сторону какого-либо одного атома и поэтому создает около него электроотрицательность, а у другого атома в силу этого создается электроположительность. Таким образом возникает полярность молекул.

В молекулах лекарственных веществ, попадающих в электрическое поле клеточных мембран или находящихся в окружении ионов, происходит образование индуцированного диполя. Поэтому дипольные связи лекарственных веществ с биомолекулами являются очень распространенными.

Водородные связи по сравнению с ковалентными являются слабыми, но их роль в действии лекарственных веществ весьма существенна. Атом водорода способен связывать атомы кислорода, азота, серы, галогенов. Для возникновения этой связи необходимо присутствие лекарственного вещества вблизи молекулы-мишени на расстоянии не более 0,3 нм, а реагирующий атом в молекуле лекарственного вещества должен находиться на одной прямой с группой ОН или NН2 в молекуле-мишени.

Вандерваальсовы связи возникают между двумя любыми атомами, входящими в лекарственное вещество и молекулы организма, если они будут находиться на расстоянии не более 0,2 нм. При увеличении расстояния связи резко ослабевают.

Гидрофобные связи возникают при взаимодействии неполярных молекул в водной среде.

Лекарственные вещества, как правило, взаимодействуют с молекулами клеток и жидких сред организма с помощью сравнительно слабых связей, поэтому действие их в терапевтических дозах является обратимым.

Выделяют четыре типа рецепторов:

1. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они связаны с плазматической мембраной клеток, фосфорилируют белки клеток и изменяют их активность. По такому принципу устроены рецепторы к инсулину, лимфокинам, эпидермальному и тромбоцитарному факторам роста.

2. Рецепторы, осуществляющие контроль за функцией ионных

каналов. Рецепторы ионных каналов обеспечивают проницаемость

мембран для ионов. Н-холинорецепторы, рецепторы глутаминовой и

аспарагиновой кислот увеличивают проницаемость мембран для ионов

Na , K , Ca , вызывая деполяризацию и возбуждение функции клеток.

ГАМКА-рецепторы, глициновые рецепторы увеличивают проницаемость

мембран для Cl , вызывая гиперполяризацию и торможение функции

3. Рецепторы, ассоциированные с G-белками. При возбуждении

этих рецепторов влияние на активность внутриклеточных ферментов

опосредуется через G-белки. Изменяя кинетику ионных каналов и

синтез вторичных мессенджеров (цАМФ, цГМФ, ИФ3, ДАГ, Са ),

G-белки регулируют активность протеинкиназ, которые обеспечивают

внутриклеточное фосфорилирование важных регуляторных белков и

развитие разнообразных эффектов. К числу таких рецепторов

относятся рецепторы для полипептидных гормонов и медиаторов

(м-холинорецепторы, адренорецепторы, гистаминовые рецепторы).

Рецепторы 1-3 типов локализованы на цитоплазматической мембране.

4. Рецепторы — регуляторы транскрипции ДНК. Эти рецепторы являются внутриклеточными и представляют собой растворимые цитозольные или ядерные белки. С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны. Функция рецепторов — активация или ингибирование транскрипции генов.

Рецепторы, обеспечивающие проявление действия определенных веществ, называют специфическими.

По отношению к рецепторам лекарственные вещества обладают аффинитетом и внутренней активностью.

Аффинитет (от лат. affinis — родственный) — сродство лекарственного вещества к рецептору, приводящее к образованию комплекса «вещество — рецептор». Внутренняя активность — способность вещества при взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект.

В зависимости от выраженности аффинитета и наличия внутренней активности лекарственные вещества разделяют на две группы.

1. Агонисты (от греч. agonistes — соперник, agon — борьба) или миметики (от греч. mimeomai — подражать) — вещества, обладающие аффинитетом и высокой внутренней активностью. Они взаимодействуют со специфическими рецепторами и вызывают в них изменения, приводящие к развитию определенных эффектов. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект. Частичные агонисты при взаимодействии с рецепторами вызывают меньший эффект.

2. Антагонисты (от греч. antagonisma — соперничество, anti — против, agon — борьба) или блокаторы — вещества с высоким аффинитетом, но лишенные внутренней активности. Они связываются с рецепторами и препятствуют действию эндогенных агонистов (медиаторов, гормонов).

Если антагонисты занимают те же рецепторы, что и агонисты, то их называют конкурентными антагонистами.

Если антагонисты занимают другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентные антагонисты.

Некоторые лекарственные вещества сочетают в себе способность возбуждать один подтип рецепторов и блокировать другой. Их называют агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом m- и агонистом d- и k-опиоидных рецепторов.

ИОННЫЕ КАНАЛЫ

Участками связывания лекарственных веществ могут являться ионные каналы. Эти каналы представляют основные пути, по которым ионы проникают через клеточные мембраны.

Естественными лигандами ионных каналов являются медиаторы:

ацетилхолин, гамма-аминомасляная кислота (ГАМК), возбуждающие

аминокислоты (аспарагиновая, глутаминовая, глицин). Увеличение

трансмембранной проводимости определенных ионов через

соответствующие каналы приводит к изменению электрического

потенциала мембраны. Так, ацетилхолин способствует открытию

ионного канала N-холинорецептора, в результате чего Na проходит в

клетку, вызывая деполяризацию мембраны и развитие потенциала

действия. ГАМК способствует открытию ионного канала Cl , что

вызывает гиперполяризацию мембраны и развитие синаптического

Важную роль в действии лекарственных веществ играет их способность имитировать или блокировать действие эндогенных лигандов, регулирующих ток ионов через каналы плазматической мембраны.

В середине ХХ в. было установлено, что местные анестетики

блокируют потенциалозависимые Na -каналы. К числу блокаторов

Na -каналов относятся и многие противоаритмические средства. Кроме

того, было показано, что ряд противоэпилептических средств

(дифенин, карбамазепин) также блокируют потенциалозависимые

Na -каналы и с этим связана их противосудорожная активность. Ионы

Са принимают участие во многих физиологических процессах: в

сокращении гладких мышц, в проведении возбуждения по проводящей

системе сердца, в секреторной активности клеток, в функции

тромбоцитов и др. Вхождение ионов Са внутрь клетки через

потенциалозависимые Са -каналы нарушает группа лекарственных

препаратов, получившая название «блокаторы Са -каналов».

Препараты этой группы широко применяются для лечения

ишемической болезни сердца, сердечных аритмий, гипертонической

болезни. Са -каналы гетерогенны, и поэтому интерес представляет

поиск их блокаторов с преимущественным действием на сердце и

сосуды (особенно разных областей: периферических, мозга, сердца и

др.). Так, верапамил оказывает более сильное влияние на ино-,

хронотропную функцию сердца и на атриовентрикулярную проводимость

и в меньшей степени на гладкие мышцы сосудов; нифедипин оказывает

большее воздействие на гладкие мышцы сосудов и меньшее — на

функцию сердца; дилтиазем в равной степени влияет на гладкие мышцы

сосудов и проводящую систему; нимодипин обладает избирательным

В последние годы большое внимание привлекают вещества,

регулирующие функцию К -каналов. Среди лекарственных веществ

имеются как активаторы, так и блокаторы К -каналов.

Активаторы К -каналов участвуют в механизме их открытия и

выхода ионов К из клетки. Если этот процесс происходит в гладких

мышцах сосудов, то развивается гиперполяризация мембраны, тонус

мышц уменьшается и снижается артериальное давление. Такой механизм

гипотензивного действия характерен для миноксидила.

Блокаторы К -каналов препятствуют их открытию и поступлению К

в клетки. Антиаритмический эффект амиодарона и соталола обусловлен

блокадой К -каналов клеточных мембран миокарда.

Блокада АТФ-зависимых К -каналов в поджелудочной железе приводит к

повышению секреции инсулина. По такому принципу действуют

противодиабетические средства группы сульфонилмочевины

(хлорпропамид, бутамид и др.).

ФЕРМЕНТЫ

Важной «мишенью» для действия лекарственных веществ являются ферменты. В медицине широко применяются группы лекарственных средств, снижающие активность определенных ферментов. Блокада фермента моноаминоксидазы приводит к снижению метаболизма катехоламинов и повышению их содержания в ЦНС. На этом принципе основано действие антидепрессантов — ингибиторов МАО (ниаламида, пиразидола). Механизм действия нестероидных противовоспалительных средств обусловлен ингибированием фермента циклооксигеназы и снижением биосинтеза простагландинов.

В качестве гипотензивных средств используются ингибиторы ангиотензинпревращающего фермента (каптоприл, эналаприл, периндоприл и др.). Антихолинэстеразные средства, блокирующие фермент ацетилхолинэстеразу и стабилизирующие ацетилхолин, применяются для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

ТРАНСПОРТНЫЕ СИСТЕМЫ

Лекарственные средства могут воздействовать на транспортные

системы молекул, ионов, медиаторов. Транспортную функцию выполняют

так называемые транспортные белки, переносящие вышеуказанные

молекулы и ионы через клеточную мембрану. Эти белки имеют

«распознающие участки» — места связывания эндогенных веществ, с

которыми могут взаимодействовать лекарственные средства. Блокада

Н , К -АТФазы секреторной мембраны париетальных клеток

(«протонного насоса») прекращает поступление ионов водорода в

полость желудка, что сопровождается угнетением образования HCl.

Такой механизм действия характерен для омепразола, пантопразола,

которые применяются для лечения язвенной болезни желудка и

Перспективной «мишенью» для действия лекарственных средств являются гены. С помощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов. Учитывая полиморфизм генов, такая задача достаточно сложна. Тем не менее исследования в области генной фармакологии получают все более широкое развитие.

Доцент кафедры фармакологии

фармацевтического факультета ММА

Подписано в печать

Ассоциация содействует в оказании услуги в продаже лесоматериалов: покупка горбыль по выгодным ценам на постоянной основе. Лесопродукция отличного качества.

Ссылка на основную публикацию
Adblock
detector